Name	Index Number//
233/3	Candidate's Signature
CHEMISTRY	_
Paper 3	Date
(PRACTICAL)	
Oct./Nov. 2010	

21/4 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL
Kenya Certificate of Secondary Education
CHEMISTRY
Paper 3
(PRACTICAL)
2½ hours

Instructions to Candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer ALL the questions in the spaces provided.
- (d) Mathematical tables and electronic calculators may be used.
- (e) All working MUST be clearly shown where necessary.
- (f) This paper consists of 8 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For Examiner's use only

Question	Maximum score	Candidate's Score
1	21	
2	19	
Total Score	40	

© 2010 THE KENYA NATIONAL EXAMINATIONS COUNCIL
Kenya Certificate of Secondary Education
CHEMISTRY
Page 3

Paper 3 21012

0034

Turn over

1 You are provided with:

acid A labelled solution A; 2.0 M sodium hydroxide solution labelled solution B; Solution C containing 25.0 g per litre of an alkanoic acid.

You are required to:

- (a) prepare a dilute solution of sodium hydroxide, solution **B**.
- (b) determine the:
 - (i) molar mass of the alkanoic acid
 - (ii) reaction ratio between sodium hydroxide and acid A.

Procedure 1

Using a pipette and a pipette filler, place 25.0 cm³ of solution B into a 250.0 ml volumetric flask. Add about 200 cm³ of distilled water. Shake well. Add more distilled water to make upto the mark. Label this solution D. Retain the remaining solution B for use in procedure II.

Fill a burette with solution C. Using a clean pipette and a **pipette filler**, place 25.0 cm³ of solution D into a 250 ml conical flask. Add two drops of phenolphalein indicator and titrate with solution C. Record your results in **table 1**. Repeat the titration two more times and complete the table.

Table 1	I	II	III
Final burette reading			
Initial burette reading			
Volume of solution C (cm³) added			

(4 marks)

Determine the:

(i)	average volume of solution C used;	(1 mark)

© 2010 THE KENYA NATIONAL EXAMINATIONS COUNCIL
Kenya Certificate of Secondary Education
CHEMISTRY
Paper 3
21012

(ii)	concentration of solution D in moles per litre;	(1 mark)
(iii)	concentration of the alkanoic acid in solution C in mol the acid reacts with 3 moles of the base);	es per litre (1 mole of (1 mark)
(iv)	molar mass of the alkanoic acid.	(1 mark)
•••••		

© 2010 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education CHEMISTRY Paper 3

21012

Turn over

Procedure II

Fill a clean burette with solution A. Place 5 cm³ of solution A into a 100 ml beaker. Measure the initial temperature of solution A in the beaker and record it in table II. Using a 10 ml or a 100 ml measuring cylinder, measure 25 cm³ of solution **B**. Add it to solution A in the beaker and immediately stir the mixture with the thermometer. Record the maximum temperature reached in table II. Repeat the experiment with other sets of volumes of solutions A and B and complete the table.

Table II

Volume of solution A (cm ³)	5	9	13	17	21	25
Volume of solution B (cm ³)	25	21	17	13	9	5
Maximum temperature (°C)						
Initial temperature (°C)						
Change in temperature, ΔT						

(6 marks)

(a) On the grid provided; plot a graph of ΔT (Vertical axis) against the volume of solution A.

© 2010 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education **CHEMISTRY** Paper 3

(0)		nder graph, determine the volume of solution A which gave the max mperature.	(1 mark)
	•••••		
(c)	Deter above	rmine the volume of solution B that reacted with the volume of solute.	ation A in (b) (1 mark)
(d)	Calc	ulate the:	
	(i)	ratio between the volumes of solutions A and B that neutralised of	ne another; (1 mark)
	•••••		
	(ii)	concentration in moles per litre of the acid in solution A. (Assume that the volume ratio is the same as the mole ratio).	
	•••••		(1 mark)
	•••••		

Paper 3

- You are provided with solids E, F and G.
 Carry out the tests below and write your observations and inferences in the spaces provided.
 - (a) Place all of solid E in a boiling tube. Add 20 cm³ of distilled water and shake until all the solid dissolves. Label this as solution E.
 - (i) To about 2 cm³ of solution E in a test-tube, add 4 drops of 2 M sulphuric (VI) acid.

OBSERVATIONS	INFERENCES
4	(2.1)
(1 mark)	(2 marks)

(ii) To about 2 cm³ of solution E in a test-tube, add 2 M sodium hydroxide dropwise until in excess.

OBSERVATIONS	INFERENCES
(1 mark)	(1 mark)

(iii) Place one half of solid **F** in a test-tube. Add 2 cm³ of distilled water and shake well. Add 4 drops of this solution to about 2 cm³ of solution **E** in a test-tube.

OBSERVATIONS	INFERENCES
	•
(1 mark)	(1 mark)

© 2010 THE KENYA NATIONAL EXAMINATIONS COUNCIL
Kenya Certificate of Secondary Education
CHEMISTRY
Paper 3
21012

(iv)	To about 2 cm ³	of solution	E in a test	tube, add 2	drops of	aqueous	potassium
	iodide.				_	_	_

OBSERVATIONS	INFERENCES
(1 mark)	(1 mark)

(b) (i) Using a metallic spatula, ignite about one half of solid G in a Bunsen burner flame.

OBSERVATIONS	INFERENCES
(1 mark)	(1 mark)

- (ii) Place the other half of solid G into a boiling tube.

 Add 15 cm³ of distilled water and shake well. Label this solution G.

 Use this solution for the following tests.
 - I Place 2 cm³ of solution G in a test-tube and determine its pH.

OBSERVATIONS	INFERENCES
(1 mark)	(1 mark)

© 2010 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education CHEMISTRY II To about 2 cm³ of the solution obtained in (ii) above, add 3 drops of acidified potassium manganate (VII).

	OBSERVATIONS	INFERENCES
	(1 mark)	(1 mark)
III	To about 2 cm ³ of the so bromine water.	lution obtained in (ii) above, add 2 drops of
~	OBSERVATIONS	INFERENCES

(iii) To the remaining solution G in the boiling tube, add the other half of solid F.

(1 mark)

OBSERVATIONS	INFERENCES
(1 mark)	(1 mark)

(1 mark)

THIS IS THE LAST PRINTED PAGE.

© 2010 THE KENYA NATIONAL EXAMINATIONS COUNCIL
Kenya Certificate of Secondary Education
CHEMISTRY
Paper 3